If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9p2 + 5p + -3 = 0 Reorder the terms: -3 + 5p + 9p2 = 0 Solving -3 + 5p + 9p2 = 0 Solving for variable 'p'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. -0.3333333333 + 0.5555555556p + p2 = 0 Move the constant term to the right: Add '0.3333333333' to each side of the equation. -0.3333333333 + 0.5555555556p + 0.3333333333 + p2 = 0 + 0.3333333333 Reorder the terms: -0.3333333333 + 0.3333333333 + 0.5555555556p + p2 = 0 + 0.3333333333 Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000 0.0000000000 + 0.5555555556p + p2 = 0 + 0.3333333333 0.5555555556p + p2 = 0 + 0.3333333333 Combine like terms: 0 + 0.3333333333 = 0.3333333333 0.5555555556p + p2 = 0.3333333333 The p term is 0.5555555556p. Take half its coefficient (0.2777777778). Square it (0.07716049384) and add it to both sides. Add '0.07716049384' to each side of the equation. 0.5555555556p + 0.07716049384 + p2 = 0.3333333333 + 0.07716049384 Reorder the terms: 0.07716049384 + 0.5555555556p + p2 = 0.3333333333 + 0.07716049384 Combine like terms: 0.3333333333 + 0.07716049384 = 0.41049382714 0.07716049384 + 0.5555555556p + p2 = 0.41049382714 Factor a perfect square on the left side: (p + 0.2777777778)(p + 0.2777777778) = 0.41049382714 Calculate the square root of the right side: 0.640697922 Break this problem into two subproblems by setting (p + 0.2777777778) equal to 0.640697922 and -0.640697922.Subproblem 1
p + 0.2777777778 = 0.640697922 Simplifying p + 0.2777777778 = 0.640697922 Reorder the terms: 0.2777777778 + p = 0.640697922 Solving 0.2777777778 + p = 0.640697922 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.2777777778' to each side of the equation. 0.2777777778 + -0.2777777778 + p = 0.640697922 + -0.2777777778 Combine like terms: 0.2777777778 + -0.2777777778 = 0.0000000000 0.0000000000 + p = 0.640697922 + -0.2777777778 p = 0.640697922 + -0.2777777778 Combine like terms: 0.640697922 + -0.2777777778 = 0.3629201442 p = 0.3629201442 Simplifying p = 0.3629201442Subproblem 2
p + 0.2777777778 = -0.640697922 Simplifying p + 0.2777777778 = -0.640697922 Reorder the terms: 0.2777777778 + p = -0.640697922 Solving 0.2777777778 + p = -0.640697922 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.2777777778' to each side of the equation. 0.2777777778 + -0.2777777778 + p = -0.640697922 + -0.2777777778 Combine like terms: 0.2777777778 + -0.2777777778 = 0.0000000000 0.0000000000 + p = -0.640697922 + -0.2777777778 p = -0.640697922 + -0.2777777778 Combine like terms: -0.640697922 + -0.2777777778 = -0.9184756998 p = -0.9184756998 Simplifying p = -0.9184756998Solution
The solution to the problem is based on the solutions from the subproblems. p = {0.3629201442, -0.9184756998}
| -10=3y+2 | | X/16-5=1 | | 204=130-w | | (8x^2-7x+8)+(6x^3-6x)= | | 16=3v-17 | | 25x^2-100+5=0 | | 4t-5=35 | | 14x-5=42 | | d^2+2d+1=0 | | 25x^2-25+5=0 | | s=x(20-2x)+x(20-2x)+x(40-2x)+20-2x(40-2x) | | a^2+2d+1=0 | | 15x+x=50 | | S/20 | | 8x+x=108 | | 35.48+m=70 | | yx+4=zx-7 | | -2=3/-3x | | 1.4+.8=-1.3 | | 5x^2+.5x-1=0 | | S=x(20-2x)+x(20-2x)+x(40-2x)+(40-2x)(20-2x) | | -1=0.166666666666667x-1 | | 1/3x-1/6y-1= | | 3v+2=6+v | | 3x^2+8x-4y+xy=11 | | -2=0.166666666666667x-1 | | t/4=1/2 | | 8x+6ab=9x-9ab | | 4.9x^2+-5x-218=0 | | 4x-8=26+3+7 | | 5.2x=9 | | 8k^2+9k-1=0 |